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Abstract The problem of coupled heat and mass transfer by natural convection from a vertical
impermeable semi-finite flat plate embedded in a non-uniform non-metallic porous medium in the
presence of thermal dispersion effects is formulated. The plate surface is maintained at constant
wall temperature and concentration. The resulting governing equations ave non-dimensionalized
and transformed using a non-similavity transformation and then solved numerically by an
implicit, iterative, finite-difference scheme. A pavametric study of all involved parameters is
conducted and a representative set of numerical vesults is illustrated graphically to show typical
trends of the solutions. It is found that the variable porosity of the porous medium and the effect
of thermal dispersion result in increases in the local Nusselt number.

Nomenclature
C = concentration at any point in the ke = effective thermal conductivity of the
field porous medium
C, = concentration at the wall ki = thermal conductivity of the pure
C» = concentration at the free stream fluid
c = dimensionless concentration kg = thermal conductivity of the porous
¢, = fluid specific heat at constant medium material
pressure L = characteristic length of the plate
D = mass diffusivity Le = Lewis number
d, = diameter of the porous medium Nu = local Nusselt number
particles Nuavg
e = buoyancy ratio = average Nusselt number
F = inertia coefficient of the porous Pr = Prandt]l number
medium R = dimensionless temperature
f = dimensionless stream function R, = dimensionless (normalized) wall
g = gravitational acceleration temperature
h = local convection heat transfer Sh, = local Sherwood number
coefficient Sh AVG International Journal of Numerical
h,, = local mass transfer coefficient = average Sherwood number Vethods for Heat & Fluid Flow,
o . e ol. 11 No. 5, 2001, pp. 413-429.
K = permeability of the porous medium SFP = local skin-friction parameter © MCB University Press, 0961-5539
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SFP v oy = free stream effective thermal
= average skin-friction parameter diffusivity of the porous

T = temperature at any point medium
T, = wall temperature B. = concentration expansion coefficient
T, = free stream temperature Br = thermal expansion coefficient
U = tangential velocity ¢ = transformed concentration
u = dimensionless tangential velocity 7 = coordinate transformation in terms
V = normal velocity of x and y
v = dimensionless normal velocity € = porosity of the porous medium
X = distance along the plate es = free stream porosity of the porous
X = dimensionless distance along the medium

plate I = dynamic viscosity
Y = distance normal to the plate v = kinematic viscosity
y = dimensionless distance normal tothe ¥ = stream function

plate 0 = transformed temperature

Tw = wall shear stress

Greek symbols o = fluid density

o, = effective thermal diffusivity of the ¢

porous medium = coordinate transformation for x

Introduction

Coupled heat and mass transfer in fluid-saturated porous media is a subject
that attracted the interest of many investigators. This interest stems from its
application in a variety of engineering processes such as heat exchangers,
insulation systems, petroleum reservoirs, chemical catalytic reactors and
processes, and nuclear waste repositories. There has been considerable work
done on the study of flow and heat transfer in geometries with and without
porous media (see, for instance, Churchill and Chu, 1975; Vafai and Tien, 1981).

Early work on porous media modeling has used the linear Darcy law
extensively. For example, the problem of natural convection in a porous
medium supported by an isothermal vertical plate was solved some time ago
by Cheng and Minkowycz (1977) using the Darcy law. It is well established
now that the Darcy law is inapplicable for high velocity flow situations for
which the relation between the pressure drop and the Darcian velocity is
nonlinear, and that it does not account for the presence of a boundary at which
the no-slip condition must be satisfied. Johnson and Cheng (1978), Vafai and
Tien (1981) and Plumb and Huenefeld (1981) considered inertia and boundary
effects in porous media. Recently, Kou and Huang (1996) have developed non-
similar transformations for natural convection flow along a vertical plate
embedded in a porous medium with a prescribed temperature condition.

Inspite of its performance in many processes, the problem of coupled heat
and mass transfer has received relatively little attention. Bejan and Khair
(1985) reported on the natural convection boundary-layer flow in a saturated
porous medium with combined heat and mass transfer. The coupled heat and
mass buoyancy-induced boundary layer in a porous medium was studied by
Jang and Chang (1988). Trevisan and Bejan (1990) considered combined heat
and mass transfer by natural convection in a porous medium for various
geometries. Later, Lai and Kulacki (1991) have extended the problem of Bejan
and Khair (1985) to include wall fluid injection effects. Early studies which



considered coupled heat and mass transfer without the presence of porous Variable porosity

media include the works of Gebhart and Pera (1971) on vertical plates, and Pera
and Gebhart (1972). Recently, Lai (1991) and Yih (1997) have studied coupled
heat and mass transfer by mixed convection from a vertical plate embedded in
a fluid-saturated porous medium.

Most realistic porous media have variable permeability and inertia
coefficient. The variations in these parameters are due to the fact that the
porosity distributions of these media are not uniform; particularly in packed
beds of spheres. In their experiments, Benenati and Brosilow (1962) have
shown a distinct porosity variation with a high porosity region close to the
solid wall in packed beds. The study of variable porosity in porous media
modeling has been developing at the same time with the study of thermal
dispersion (better explained by Cheng, 1981; Plumb, 1983; and Amiri and Vafai,
1994). Hong and Tien (1987) have analyzed the problem of thermal dispersion
effects on natural convection about a heated horizontal cylinder in an enclosed
porous medium. Hsiao et al. (1992) have discussed the effects of non-uniform
porosity and thermal dispersion on natural convection about a heated
horizontal cylinder in an enclosed porous medium. Hsiao et al. (1992) have
shown that including the effects of variable porosity and thermal dispersion
increases the average Nusselt number and reduces the error between the
experimental data available and their solutions. It should be noted here that, to
the best of the authors’ knowledge, no experimental data appear to be available
for natural convection over a vertical plate embedded in a porous medium in
order to compare with the work in this paper. Also, there is no work done on
combined heat and mass transfer over a vertical plate by natural convection
embedded in a porous medium with a variable porosity distribution and
thermal dispersion effects. This is the purpose of the present work.

Problem formulation

Consider steady, laminar heat and mass transfer by natural convection flow
along an impermeable semi-infinite vertical plate embedded in a fluid-saturated
non-uniform non-metallic porous medium taking into account the effects of
thermal dispersion of the porous medium. The surface of the plate is
maintained at constant temperature and concentration. Both the temperature
and concentration at the plate are always greater than their uniform ambient
values existing far from the plate surface. The fluid is assumed to be
Newtonian, viscous, and has constant properties except the density in the
buoyancy term of the balance of momentum equation. Invoking the Boussinesq
and boundary layer approximations, the governing equations for this problem
can be written as
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where U, V, T and C are the fluid x-component of velocity, y-component of
velocity, temperature, and concentration, respectively. p, v, Br, and (3, are the
fluid density, kinematic viscosity, coefficient of thermal expansion, and
coefficient of concentration expansion, respectively. D and g are the mass
diffusivity and the gravitational acceleration, respectively. ¢, K, F, and «. are
the porous medium porosity, permeability, inertia coefficient, and effective
thermal diffusivity, respectively. T, and C, are the ambient fluid temperature
and concentration, respectively.
Based on the experimental results on porosity distribution in packed beds
obtained by Benenati and Brosilow (1962), Amiri and Vafai (1994) have shown
that the porosity can be expressed by the following exponential relationship:

e=c(l+a eXp(_ZQY)) (5)

where ¢ is the free-stream porosity, d,, is the particle diameter, and a; and a; are
empirical constants which depend on the ratio of the bed to particle diameter and
are determined experimentally. Amiri and Vafai (1994) suggested 0.37, 1.7 and 6.0
for the values of &, a; and ay, respectively. These values were found to best fit the
experimental data collected by Roblee et al. (1958) and Benenati and Brosilow
(1962). The permeability and the inertia coefficient are given by

dg53
K(Y) = o — o (6)
=101 o

Amiri and Vafai (1994) have employed the following relation for the effective
thermal conductivity k. which represents the sum of the molecular thermal
conductivity (the first term) and the thermal conductivity due to dispersion (the
second term):



ke = (¢ + 0.1[Pr(%dp)])kf +(1-e)ka 8)

where k; and kg are the fluid molecular and the porous medium material thermal
conductivities, u is the dimensionless tangential velocity, p is the dynamic

viscosity of the fluid and Pr (=1c, /(eKy)) is the Prandtl number.
Non-dimensionalization of the above equations is obtained by using

_X Y UL VL
T VT YT VT e 9
R T - Ty C—-Cqy 9)
= s CcC =
asv/(g fr L?) asv/(g B L?)

where L and oy (o =5 ke/(pcp)) are, respectively, characteristics of plate
length and the molecular thermal diffusivity at the free stream. Using the
following non-similarity transformations reported earlier by Kou and Huang
(1996):

R1/4
Uzmv

P(x,y)

R(x,y)
R(1)/4 x3/4

£:X7 f(&ﬂ): R

, 06 = (10)

where R, (= gB1(T, — Too)L3/v) is the dimensionless wall temperature (or
Rayleigh number), defining

c_ Y

Co

50 (Co - Coo)
BT (To - Too)

e =

(11)

where c,(= gBr(Co — Coo)L3/v), Ty, Co, and e are the dimensionless
concentration at the wall, the wall temperature and concentration and the
buoyancy ratio which is the ratio of the buoyancy forces due to concentration
change to the buoyancy forces due to temperature change, respectively and
then substituting equations (10) and (11) into the non-dimensionalized from of
equations (2) through (4) yields the following non-similar equations:

111 i% //_1 AV /a_f/_ N@ _150(1—6)2L2 1/2¢1
t 5o [t =5 () — £ 5 faf)]+9+eg_—dgg3Rf/2 3
L75(1 =&)L 0
g, prav o)
(12)
k 1 Oke, 3 o0 of
S0 (0 = (-0 1
L +ks(an) +3 £ ( % 985) (13)
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Le
where a prime denotes differentiation with respect to 1 and k(= e:k¢) and Le

(= ag / D) are the molecular conductivity at the free stream and Lewis number,
respectively, and

—asLg iy
TR -
ptlo

— e.(1 + ay exp(
It should be noted here that the porous medium is assumed to be nonmetallic
(glass fibers), such that kg < < k¢ and, therefore, the last term of equation (8) is
neglected. The dimensionless boundary conditions for this problem can be
written as

UX,00=0, UX,00)=0, V(X,0) =0,

T(X,0) =T, T(X,00) = T, C(X,0)=Co, C(X,00)=Co 10
The transformed dimensionless boundary conditions become

f'(¢,0)=0, f =0, f(£0)=0

(6:0) =0, £(§00) =0, £(£0) =0, -

9(57 0) =1, 0(5700) =0, §(£70> =1, §(£7OO) =

Of special interest for this flow and heat transfer situation are the skin-friction
parameter, Nusselt number, and the Sherwood number. These are defined as
follows

Tw J (SFP) dx
SFP = ——— = ¢/1{"(¢,0), SFPyyg =+—F— 18
T A R R r
_hx_ 3411 /4 L fhdx
Nu = ks — 5 Ro o (67 0)7 NuAVG - ks de (19)
- hInX 3/4 1/4 / . L fhlndX
Sh, = Y —&7"R,/7¢(€,0), Shave = D fdx (20)

where 7, h and h,, are the shear stress at the wall, convective heat transfer
coefficient and the local mass transfer coefficient, respectively, and SFP v,
Nuavg and Shavyg are the average skin-friction parameter, Nusselt number and
Sherwood number, respectively.

Numerical method

The resulting non-similar equations (equations (12) through (14)) for the problem
are nonlinear and must be solved numerically with iteration subject to the
corresponding boundary conditions. The implicit finite-difference method



discussed by Blottner (1970) has proven to be accurate for the solution of such Variable porosity

equations. The method starts with a change of variable such that V = f' in order to
reduce the momentum equation (12) into a second-order non-similar differential
equation. Then, the equations governing V, 6, and ¢ are discretized using three-
point central different quotients and are arranged in a tri-diagonal system of
algebraic equations that can be solved by the well-known Thomas algorithm. But,
due to the nonlinearities of the equations, an iterative solution is expected. The
solution marches from £ =0 to £ = 1 using a two-point backward difference
formula in the £ direction. A variable step size in the v direction is selected since
rapid changes in the dependent variables are expected near the wall. With a
starting step size in the 7 direction of 0.001 at the wall and a step size growth
factor of 1.03 such that An, ;1 = 1.03An, accurate results can be obtained with
minimum computational efforts. Moreover, a constant step of 0.05 in the &
direction was selected after performing many trials to assess grid independence.
The convergence criterion for this problem required that the difference between
the current and the previous iterations be 10~ Once the solutions for V, 6, and ¢
are converged, the equation V = f’ is solved for by the trapezoidal rule.

It should be mentioned here that the above numerical method was employed
to solve the non-similar equations in the absence of the porous medium and
ignoring the mass diffusion equation. The results of f’, # and Nu for this case
were found to be in excellent agreement with the solution of laminar natural
convection boundary layer flow along an isothermal vertical wall reported by
Bejan (1993). This comparison lends confidence in the adequacy and accuracy
of the numerical method.

Results and discussion
Figures 1 and 2 present the behavior of the induced tangential velocity and
dimensionless temperature profiles at £ = 1 for various values of the porosity
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Figure 1.

Effects of a; on
tangential velocity
profiles
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Figure 2.
Effects of a; on
temperature profiles

1.0
a,=6.0

0.9 1
d/L=0.05

081 a,=0.0,0.5,0.9,1.7 =0.0
Pr=6.7

0.7 1 7
R,=5x10

0% £,=0.37

< 054 ;;:1 0

044

0.3 -

029

0.1 1

0.0 T

0 5 10 15 20 25 30 35

n

distribution parameter aj, respectively. In all of the figures to be reported
subsequently unless otherwise stated, the reference values of the parameters a;,
ap, dy/L, Pr, R, and ¢; are 1.7, 6.0, 0.05, 6.7, 5 x 107 and 0.37, respectively and
the other parameters are set to zero. It is seen that increasing a; not only results
in a decrease in the tightness of the porous medium but it also results in an
increase in the thermal diffusivities at and near the wall due to the presence of
large porosities in this region for the variable porosity model compared to the
reference case where the porosity is constant. Notice that for large values of 7,
the transformed dimensionless tangential velocity f for all values of a; will
have the same value which means that the porosity reaches its constant value
where the velocity does not reach the free-stream value. It is interesting to
notice the existence of the peaks in the velocity profiles in the region close to the
wall. This type of behavior is called the channelling effect and has been
reported earlier by many previous investigators (see, for instance, Vafai and
Tien, 1981). The increase in the flow temperature is expected because of the
increased thermal conductivity as a; increases. This increase in the thermal
conductivity and the enhanced flow velocity require increases in the wall heat
flux to maintain energy conservation.

Figures 3 and 4 illustrate the trends of the local skin-friction parameter and
the local Nusselt number distribution along the surface for different values of
ay, respectively. Since the induced tangential velocity increases as a; increases,
its slope at the wall increases. Therefore, the skin-friction parameter increases
as al increases as shown in Figure 3. The definition of the local Nusselt number
in Figure 4 is based on the effective thermal conductivity of the porous medium
at the wall makes the comparison between the curves according to their
dimensionless convective heat transfer coefficient difficult because of the
difference in porosities at the wall. Defining Nu,,(Nu,, = Nu(k,/ks)) as the
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equivalent dimensionless local heat convective transfer coefficient as if the
thermal conductivity is constant at the free stream condition kg for all the cases,
provided similar porosity and liquid properties at the free stream region exist.
Therefore, the values of Nuy, increase as a; increases and this can be detected
from Figure 4. Notice that the skin-friction parameter is higher for the case
where the thermal dispertion is neglected where as the local Nusselt number is
higher as shown from Figures 3 and 4, respectively.

Figures 5 and 6 illustrate the behavior of the induced tangential velocity and
the dimensionless temperature at £ = 1 for different values of the ratio d,/L for
a uniform wall temperature condition, respectively. For large values of d,/L, €
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Figure 3.
Effects of a; on the
skin-friction parameter

Figure 4.
Effects of a; on the local
Nusselt number
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Figure 5.

Effects of dy/L on
tangential velocity
profiles

Figure 6.
Effects of a; on
temperature profiles
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reaches its free stream value after a larger distance compared to smaller values
of dy/L. Thus, as dy/L increases, the voids volume increases causing the
resistance against the flow to decrease which results in an increase in the
induced tangential velocity. This is not the only reason since thermal
diffusivities within the boundary layer increase due to increased porosity and
thermal dispersion as dp/L increases. Figure 5 is illustrative of these factors.
The increase in the porosity as d,/L increases results in increasing the
convective thermal energy transfer due to the increase in the buoyancy forces
compared to the thermal diffusion from the wall because all of the studied cases
have the same effective thermal diffusivity at the wall. Thus, the flow



temperature (especially near the wall) decreases and the absolute slope of wall
temperature increases as dy/L increases. Notice that because of the large
thermal dispersion near the wall, the temperature gradients there increase as
d,/L increases. These facts can be seen from Figure 6.

Figures 7 and 8 show the development of the local skin-friction parameter
and the local Nusselt number along the surface for different values of d,/L,
respectively. The increase in the induced velocity and its slope near the wall at
higher d,/L values cause the local skin-friction parameter to increase as shown
in Figure 7. As d,/L increases, the convective thermal energy increases due to
the increase in the thermal diffusion resulting from the increase in the thermal
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Figure 7.
Effects of d,/L on the
skin-friction parameter

Figure 8.
Effects of d,/L on the
local Nusselt number
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Figure 9.

Effects of R, on
tangential velocity
profiles

Figure 10.
Effects of R, on
temperature profiles

dispersion and the porosity near the wall. This results in increasing the wall
heat flux removal. As a result, the Nusselt number increases with increases in
the values of d,/L as shown in Figure 8. The same can be said regarding the
convective heat transfer coefficient and Nuy,.

Figures 9 and 10 illustrate the behavior of the induced tangential velocity
and the dimensionless temperature at £ = 1 for various values of dimensionless
wall temperature R,,. The normal distances from the plate of any two points on
these figures decrease as R, increases. Thus, large changes in the porosity will
be felt far away from the wall when R, increases. Physically, this means that
the boundary-layer thickness is expected to decrease as R, increases such that
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the free stream porosity is quite far from the porosity near the wall. Note that Variable porosity

the normal distance, induced tangential velocity and the dimensionless
temperature are not only functions of 7, ', and 6, respectively, but they are also
functions of R, where all of them except the normal distance increase as R,
increases. Similar to the effect of increasing the ratio d,/L, is the fact that the
coefficient A which is a measure of the tightness of the porous medium
decreases as R, increases, increasing Ro results in an increase in the induced
velocity as shown in Figure 9. Also, this results in large thermal diffusion near
the wall due to increases in both the porosity and thermal dispersion. Moreover,
the increased speeds of the streamlines are capable of convecting the conducted
wall heat flux from the wall at larger values of R, compared to smaller ones.
Accordingly, the absolute slope of the wall temperature increases and the flow
temperature decreases as R, increases as shown in Figure 10.

Figures 11 and 12 illustrate the behavior of the local skin-friction parameter
and the local Nusselt number for different values of R, respectively. The
increase in the induced velocity and its slope near the wall at higher values of
R, cause the local skin-friction parameter to increase as shown in Figure 11. It
should be mentioned here that the wall shear stress is proportional to (SFP)
R, In addition, as R, increases, the flow velocity and thermal diffusion
increase as a result of the variable porosity and dispersion effects causing a
rapid increase in the rate of wall heat transfer. This, in turn, increases the local
Nusselt number as shown in Figure 12. Similar trends are obtained for the
convective heat transfer coefficient and Nuy,,.

Figures 13-15 illustrate the effect of the buoyancy ratio e on the average
skin-friction parameter SFP 5v, the average fluid Nusselt number Nu; and the
average Sherwood number Shavg, respectively. In these figures, the average
skin-friction parameter increases for all the cases and a rapid increase is
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Figure 11.
Effects of R, on the
skin-friction parameter
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Figure 12.
Effects of R, on the local
Nusselt number

Figure 13.

Effects of e on the
average skin friction
parameter
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noticed after e = 300. The total volume of voids is the smallest for the case
where a; = 0.0 is the smallest for all values of e. By doing a scale analysis on
laminar natural mass diffusion over a vertical plate similar to the scale analysis
done by Bejan (1993) on laminar natural convection over a vertical plate, it is
concluded that the concentration boundary-layer thickness decreases as the
local Rayleigh number driven by mass (or local dimensionless concentration at
the wall) increases.

Physically speaking, increasing e results in increases in the local
dimensionless concentration at the wall. For the case of d/L = 0.067, the
increase in the thermal diffusivity due to the variable porosity and thermal
dispersion effects (due to increases in the buoyancy forces and also with the
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help of increases in the average flow velocity) causes the values of Nug to
increase. But when e increases further, the maximum induced velocity moves
closer to the wall (channeling effect) and the resistance due to the porous
medium inertia effects will increase rapidly (since it is a function of u?) causing
a relative decrease in the induced velocity and, thus, a decrease in thermal
dispersion despite the fact that the maximum thermal dispersion occurs in the
region of maximum porosity. This results in decreasing the effective thermal
diffusivity compared to cases of lower e values where the maximum Nu; values
occur. This, in turn, results in decreasing the amount of heat convected by the
enthalpy streams as can be seen from Figure 14 after e = 1,000. For d/L = 0.05,
the values of Nu; are lower due to lower thermal dispersion effects and the point
of maximum Nu; value is shifted to the right since the porosity thickness is
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Figure 14.

Effects of e on the
average fluid Nusselt
number

Figure 15.
Effects of e on the
average Sherwood

number
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reduced due to lower particle diameter which requires a large value of e to
bring maximum induced velocities near the region of variable porosity.

The case of a; = 0.0 has the lowest Nu; value because it has the minimum
porosity. Hence, it has the minimum effective thermal conductivity over the
whole domain. For a constant porosity model, the maximum Nu¢ value occurs at
e = 100. Actually, the reason is also associated with the decrease in the thermal
dispersion as the induced velocity increases at large values of e because of the
porous medium inertia effects as they are greater in this case than in the other
cases. This allows an earlier response to the porous medium inertia effects for
this case as e increases. Thus, Nu, is expected to decrease at higher values of e
and the optimum one is found at e =100 as shown in Figure 14.

In Figure 15, it is noticed that the average Sherwood number increases as e
increases and that it is highest for the value of e with the highest porosity
which is for a; = 1.7 and d,/L = 0.067. The increase in the value of Shayg
becomes greater after e = 80. This is associated with high Lewis numbers
which make the mass diffusivity small. Thus, relatively higher mass buoyancy
ratios are needed to initiate the flow and, hence, to extract mass from the wall.

Conclusion

The problem of steady, laminar coupled heat and mass buoyancy-induced
natural convection boundary-layer flow of Newtonian fluid along an isothermal
vertical semi-infinite surface embedded in a non-uniform porous medium was
considered. The governing equations were developed and transformed using
appropriate non-similarity transformations. The transformed equations were
then solved numerically by an implicit, iterative, finite-difference scheme. The
obtained results for special cases of the problem were compared with
previously published work and found to be in excellent agreement. It was
found that the skin-friction parameter and the Nusselt number were increased
as a result of the presence of variable porosity and thermal dispersion effects.
Also, they increased when the particle diameter of the porous medium and the
reference dimensionless wall temperature were increased where the Nusselt
number was found to be higher than the case of a pure fluid for a large
reference wall temperature. Eventually, it was found that the increase in the
buoyancy ratio increased the skin-friction coefficient and the Sherwood number
but the last statement was not always true for the Nusselt number. It is hoped
that the present work will serve as a vehicle for understanding more complex
problems involving variable porosity and thermal dispersion effects.
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